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Abstract. To solve a system of nonlinear equations, Wu wen-tsun introduced a new formative
elimination method. Based on Wu’'s method and the theory of nonlinear programming, we here
propose a global optimization algorithm for nonlinear programming with rational objective function
and rational constraints. The algorithm is already programmed and the test results are satisfactory
with respect to precision and reliability.
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1. The problem

Assume thaff (x), g;(x), x = (x1,x2,... ,x,), j =1,2,...,m, are continuously
differentiable, rational and real functions defined@re R". The problem(P) is
to find the global minimizers (or global maximizers) ffx), i.e.,

min f (x)
(P): st. gix)=0, j=212...,1
gi(x)=0 j=I1+11+2 ... ,m.

2. Onthe Wu Elimination

Let K[x1, x2, ..., x,] be the ring of polynomials in variables, x,, ... , x, with
coefficients in a fieldk', and this ring is also denoted I3 [x]. Consider a fixed
ordering on the set of variables; < x, < ... < x,. For a polynomiaf € K[x],
a variable with the greatest subscript which occursigncalleda main variable of
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f; further, letclass(f)be the subscript of the main variable;;, anddeg,, (f) be the
order off on the main variable;. Given two polynomials,, f, € K[x], f; is called
a reduced polynomial with respect toif deg, (f1) < deg,.(f2), c = class{,).

Let PS be a set of polynomialg,, p, ..., p, in the ring X[x]. Denote by
PS = 0the systemofp; = 0,i = 1,2,...,n. PS is calleda triangularized
polynomial set if the main variable of thigh polynomialp; is x;. By this definition,
the polynomialp; can be written in the form

p; = I; - x"" + terms of lower degreeow; i =1,2,...,r,

in which the positive integet:; is the degree op; on x;, the coefficient/; of the
leading termx;" is a polynomial inK[x1, x2, - - - , x,,—1], @and is calledhe initial
of p;. A polynomial setAS is calledan ascending sef for every pairj > i, i =
1,2,...,r—1,thedegree of initial; of p; onx; satisfiesleg,, (I;) < deg,,(p;) =
m;. A subsetBS of an ascending set @t S is calleda basic set ofP S if all main
variables of polynomials in the subses are different to each other.

For a polynomialp, definethe remainderRem(p/AS) of p with respect to a
given ascending setS by the following division: first, do division op to each
pi C AS with respect to the main variable of p;, such that the remainder pfis
thereduced polynomialvith respect tgp;; then, the remaindeRem (p/AS) is the
set of all remainders g to eachp;.

For a polynomial seP S, the set of all zeros oP S satisfyingl # 0 is denoted
by Zero(PS/I) wherel is the product of alll; and I; is the initial of p;. An
ascending sef'S is calleda characteristic sebf a given polynomial seP S if it
satisfies (1)Zero(PS) C Zero(CS) and (2) the remaindeRem (p;/CS) = 0, for
every polynomialp; in PS. The following results have been obtained.

LEMMA 1. (Wu Wen-tsun, 1986). €S = {C.,Co,...,C,} is the charac-
teristic set of a polynomial sePS, then the zero set oP S has the following
decompoaosition

Zero(PS) = Zero(CS/I)+ Y  Zero(PSUI)
i=1
wherel; is the initial of C; and I is the product of all/;.
LEMMA 2. (Wu Wen-tsun, 1987, 1992). There is an algorithm which permits
to determine characteristic sétS for any given polynomial set @S in a finite of
steps that satisfies

Zero(CS/I) C Zero(PS) C Zero(CS)

where! is the product of initials of polynomials i@S.
Based on the results above, the Wu Elimination for solving a system of equa-
tions (PS = 0) can be simply described as follows.

(1) Fix an ordering on the set of variables ®§.
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(2) Determine the clagp;) anddeg, (p;) of eachp; C PS.

(3) Select a basic s&Sin PS.

(4) Obtain the remainde®Bem ((PS — BS)/BS).

(5) If Rem = 0,thenCS = BS and go (6), else lePS = BS U Rem and go (2).
(6) SolveCsS = 0 by the ordinary elimination.

3. The basic steps of algorithm

(1) Transform the original problem into one or several standard problems.

A problem is callech standard problens P if all constraints are equality con-
straints except slack variables and some independent variables are defined on open
sets. The original problem needs to be transformed into one or several of standard
problems. The transformation can be done by the following two approaches:

Approach 1. Partition closed sets of variables into open sets. For instance, par-
tition a; < x; < b; into a; < x; < b; andx,- = b;.

Approach 2. Add slack variables to transform inequality constraints into equal-
ity constraints. For instance, transforgn(x) > 0 into g;(x) — j2 = 0 and
—00 < Jy < 00.

By repeatedly using approach 1 and approach 2, the original problem is finally
transformed into one or several standard problé&ias

min f(x)
st. hj(x) =0, jeJc{l2 -, ,m},
ai<xi<bi, iEKC{l,Z,"',n},

-0 < Jy <00, Jsare slack variables

(2) Transform each standard problem into two systems of equations.
According to the results about the first-order necessary condition, all local min-
imizersx* of a standard problem must be found in the solutions of the sy#tem
of equations (corresponding to this standard problem),

(Py) : Vf(X*):Zjej)\thj(x*)7
V'l hjx =0, jeJciLl2...,m)

or Pz, 0
oh)
G@:dm%a%pnwgzo
hjx*)=0 jeJc{lL2- - ,m},

wherep = |J|. Thus, the original problem is transformed into the problem of
solving several systems of equations.

(3) Partition the rational expressions of each system of equations into two groups
of polynomials.

Partition the rational expression of each system of equations into two polyno-
mial groupsA andB. For instance, assume that = % =0 i=12---,
then allk;, (x)'s form the groupA andk;,(x)’s form the grouB.
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(4) Find a characteristic sétS of each groupA of polynomials.
The procedure of finding the characteristic sets of polynomials can be demon-
strated by the following figure:

PS= PS5y
BSo(C PSp) ]+ =PS5
RSy
BS, .
RS, }* = PS5
PS,,
BS, (=CS)
RS, =

In this figure,P Sy = PS, BS; is a basic set oP S, (it is easy to find a basic set
according to the definition of basic set), the remaing8§f = { the remainder op
to BS, p € PS;y — BS:}, andPSk+l = BS; URS;, wherek =0,... ,m— 1.

(5) Find the set of zero points of each characteristiaCseby iterative elimin-
ation method.

Since a characteristic set is in triangular form, the zero point§ $can be
found by means of iteratively solving a series of algebraic equations with one
variable. For an equation with one variable, first using Sturm sequence method,
one can determine whether there are real roots of the equation; secondly, the upper
and lower bound of real roots can be determined from the theory on polynomials;
at last, all real roots of the equation can be found by iterative algorithms, such as
bi-part method, accelerated Newton method, and so on.

(6) Exclude some zero points of eaCls, which lead to that any;(x) = 0
does not hold or let any polynomial of the growpcorresponding to the grouiy
be equal to zero. The remainder contains all local minimum points of the problem.

(7) Based on the step (6), find the optimizers by comparing the values of object-
ive function for the zero point sets of all characteristic sets.

4. The global convergence of algorithm

An algorithm is calledylobally convergenif the algorithm can approximate all the
global optimizers within any given precisienn finite steps.
THEOREM. If the problem(P) has the finite number of global optimizers in its
feasible region, then the algorithm is globally convergent.

We give a brief proof as follows.
Proof. 1. By step (1), the original problem can be transformed into the finite number
of standard problems in finite steps. By steps (2) and (3), the finite humber of
polynomial groups can be obtained. Moreover, the finite number of characteristic
sets whose order is finite can be obtained in finite steps from Lemma 2.
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2. Since the given problem has the finite number of optimizers, each optimizer
x* must be a unique local minimizer in a sufficiently small reghdx*). That is to
say,x* belongs to the set of isolated zero points of systems of equakipasd P,

(if the gradient vector§’h;(x*)(j = 1,2, ..., p) are linearly independent, then
the local minimizers are in the set of isolated zero point®gfor else they are in
the set of isolated zero points 8% ). Fromzero(CS/I) C zero(PS) C zero(CS)
(Lemma 2), we know that all local minimizers are included in the set of isolated
zero points of characteristic sets Bf or P»; i.e., the optimizers belong to the set
of isolated zero points of characteristic sets.

3. By the Bezout theorem and the results of algebraic geometry (Shafarevich,
1977), we have known that the set of isolated zero points of a system of poly-
nomial equations is finite, it also means that the set of isolated zero points of a
characteristic set is finite. This set of zero points can be obtained by iteratively
solving finite number of equations with one variable (the characteristic set is with
triangular form): for a polynomial with one variable, we can determine the upper
and lower bounds of all real roots by the theory of polynomials, and assuming
they area andb respectively; then, using the bi-part method, we can get a solution
with the required precision in less tWa;tgzae;” steps; in fact, we can use another
methods, e.g. Newton method, to find solutions of equations in fewer steps. This
means that the algorithm will converge to all zero points of characteristic sets in
finite steps.

4. Comparing the values of objective functiondiinite solutions can be done
in O(n - logn) steps.

In a word, by steps (2—7) one can find global optimizers in finite steps.

5. The implementation of the algorithm and results

The program of this algorithm involves many mathematical methods and software
techniques. We have applied the program to calculate 35 examples in 486/33 mi-
crocomputers (4M) and obtained satisfactory results in respect of high precision,
reliability, and convenience. Most examples are abstracted from the test examples
of twelve books ([1-12]). Each computation result of the thirty-five examples is
exactly identical to the original one except for one example, on which there is
a little difference at the eighth number after the fraction point from the original
result (see Example 3):

the original : x; = £0.066041593 x, = 70.192895426
the new : x1 = £0.066041588 x, = F¥0.192895426
thedifference: Ax; = =£0.00000001 Ax, = 0.000000000;

moreover, the original result is also an approximate result obtained by the inter-
val method. Among these examples, there are different classes of problems, such
as, the problems of multi-optimizers, problems of multi-local minimizers, prob-
lems of convex or nonconvex programming, problems of geometric programming,
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problems of general programming with rational functions, and special problems in
which the optimizers do not satis& — 7 condition.

We here show five examples of them:
EXAMPLE 1 (Franklin, 1980). Rational functions, two groups of global optim-
izers.

objective :10+6-x1+6-xf—22-x2— 20-x1-x2+21-x§
1
25 (1—x2/4—x3)
St. x1>0.

EXAMPLE 2 (Phillips, 1987). Rational functions, four groups of global optim-
izers.

objective =5- x? — x% - x§
5.x2 3.x

St. —2-—24+7 2 >0
x2 X2

EXAMPLE 3 (Hansen, 1992). Two groups of global optimizers.

objective = 12-x% — (63-x7)/10+ x5 +6-x1-x2 +6- x5
1—16-xf—25-x22 <0,
—400— 145 x; +13-x3 +85-x, < 0,
—44+x1-x2<0

EXAMPLE 4 (Van Der Hoek, 1980). A group of global optimizers with multi-local
minimizers.

objective =
14463+ 18340 x; + 10197- x2 — 34198 x, — 24908 x; - xo-+
20909- x2 + 4542. x3 — 2026- x1 - x3 — 3466- x5 - x3 + 1755. x2+
8672 x4 + 3896- x1 - x4 — 9828- x5 - x4 + 2178 x3- x4 + 1515- xi-f—
86-x5+658-x1-x5—372-x3-x5 —348- x3- x5 — 44 - x4 - x5+ 27-x§

st. =S54+ x1+x2+x3+x3+x5<5,
—204+10-x1+10-x0—3-x3+5-x4+4-x5 >0,
—404+8-x1—x2+2-x3+5-x4—-3-x5>0
—114+8-x1—x2+2-x3+5-x4—3-x5>0,
—-30+4-x1+2-x—3-x3+5-x4—x5<0
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EXAMPLE 5 (Schittkowski, 1987). A group of global optimizers with multi-local
minimizers.

objective =
600+ 720- x1 + 1260- x2 — 1072 x3 — 2454 x} + 1344 x>+
952. x9 — 768 x{ + 144 x% + 720 x, — 4680- x1 - x2 + 7344 x2 - xp+
5784- x3 - x — 7680- x7 - x, — 168- x3 - xp + 1344- x% . x; — 288 x{ - xp+
3060- x5 — 19296 x;1 - x3 + 7776 x7 - x2 + 9840- x3 . x3—
5370 x7 - x3 +2592. x3 - x3 — 648 x% . x2 + 12288 x3—
23616 x - x5 + 5040- x2 - x3 + 1240- x3 - x3 — 4080- x7 - x3+
1224 x3 - x3 + 14346. x5 — 11880 x; - x5 + 8730- x2 - x5—
3480- x3 - x5 + 1305- x7 - x5 + 1944 x5 — 1188 x1 - x5+
3672- xf . xg’ — 1836- xf . xg — 4428. xg +1944. x, - xg—
1458 x% - x5 — 648 x 4+ 972 x1 - x; + 729 x5

St. —2<x1<2,-2<x2<2

6. The features of the program

The program made by us is with the following features:

(1) Global property: for the nonlinear programming problems that both the ob-
jective functions and the constraints are rational, global solutions are obtained by
a unified and simple way.

(2) Computation precision is high.

(3) Reliability check is easy to be done for each problem by several ways.

(4) A starting iterative point is not required.

(5) Data format is with common form.

(6) Symbol calculation, numerical computation, other mathematical skills, and
software techniques are applied in the program.

7. The limitation

The size of polynomials may grow up exponentially while the method of charac-
teristic set is used, so the complexity is exponential in some cases.
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