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Abstract. To solve a system of nonlinear equations, Wu wen-tsun introduced a new formative
elimination method. Based on Wu’s method and the theory of nonlinear programming, we here
propose a global optimization algorithm for nonlinear programming with rational objective function
and rational constraints. The algorithm is already programmed and the test results are satisfactory
with respect to precision and reliability.
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1. The problem

Assume thatf (x), gj (x), x = (x1, x2, . . . , xn), j = 1,2, . . . , m, are continuously
differentiable, rational and real functions defined onD ∈ Rn. The problem(P ) is
to find the global minimizers (or global maximizers) off (x), i.e.,

(P ) :
minf (x)

st. gj (x) = 0, j = 1,2, . . . , l
gj (x) ≥ 0 j = l + 1, l + 2, . . . , m.

2. On the Wu Elimination

Let K[x1, x2, . . . , xn] be the ring of polynomials in variablesx1, x2, . . . , xn with
coefficients in a fieldK, and this ring is also denoted byK[x]. Consider a fixed
ordering on the set of variables:x1 ≺ x2 ≺ . . . ≺ xn. For a polynomialf ∈ K[x],
a variable with the greatest subscript which occurs inf is calleda main variable of
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f ; further, letclass(f)be the subscripti of the main variablexi, anddegxi (f ) be the
order off on the main variablexi. Given two polynomialsf1, f2 ∈K[x], f1 is called
a reduced polynomial with respect to f2 if degxc(f1) < degxc (f2), c = class(f2).

Let PS be a set of polynomialsp1, p2, . . . , pn in the ringK[x]. Denote by
PS = 0 the system ofpi = 0, i = 1,2, . . . , n. PS is calleda triangularized
polynomial set if the main variable of theith polynomialpi isxi. By this definition,
the polynomialpi can be written in the form

pi = Ii · xmii + terms of lower degree onxi i = 1,2, . . . , r,

in which the positive integermi is the degree ofpi on xi , the coefficientIi of the
leading termxmii is a polynomial inK[x1, x2, · · · , xm−1], and is calledthe initial
of pi . A polynomial setAS is calledan ascending setif for every pairj > i, i =
1,2, . . . , r−1, the degree of initialIj of pj onxi satisfiesdegxi (Ij ) < degxi (pi) =
mi. A subsetBS of an ascending set ofPS is calleda basic set ofPS if all main
variables of polynomials in the subsetBS are different to each other.

For a polynomialp, definethe remainderRem(p/AS) of p with respect to a
given ascending setAS by the following division: first, do division ofp to each
pi ⊂ AS with respect to the main variablexc of pi, such that the remainder ofp is
thereduced polynomialwith respect topi; then, the remainderRem(p/AS) is the
set of all remainders ofp to eachpi.

For a polynomial setPS, the set of all zeros ofPS satisfyingI 6= 0 is denoted
by Zero(PS/I) whereI is the product of allIi and Ii is the initial of pi. An
ascending setCS is calleda characteristic setof a given polynomial setPS if it
satisfies (1)Zero(PS) ⊂ Zero(CS) and (2) the remainderRem(pi/CS) = 0, for
every polynomialpi in PS. The following results have been obtained.

LEMMA 1. (Wu Wen-tsun, 1986). IfCS = {C1, C2, . . . , Cr} is the charac-
teristic set of a polynomial setPS, then the zero set ofPS has the following
decomposition

Zero(PS) = Zero(CS/I)+
r∑
i=1

Zero(PS ∪ Ii)

whereIi is the initial ofCi andI is the product of allIi.
LEMMA 2. (Wu Wen-tsun, 1987, 1992). There is an algorithm which permits

to determine characteristic setCS for any given polynomial set ofPS in a finite of
steps that satisfies

Zero(CS/I) ⊂ Zero(PS) ⊂ Zero(CS)
whereI is the product of initials of polynomials inCS.

Based on the results above, the Wu Elimination for solving a system of equa-
tions (PS = 0) can be simply described as follows.

(1) Fix an ordering on the set of variables ofPS.
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(2) Determine the class(pi) anddegxc (pi) of eachpi ⊂ PS.
(3) Select a basic setBS in PS.
(4) Obtain the remaindersRem((PS − BS)/BS).
(5) If Rem = 0, thenCS = BS and go (6), else letPS = BS ∪ Rem and go (2).
(6) SolveCS = 0 by the ordinary elimination.

3. The basic steps of algorithm

(1) Transform the original problem into one or several standard problems.
A problem is calleda standard problemSP if all constraints are equality con-

straints except slack variables and some independent variables are defined on open
sets. The original problem needs to be transformed into one or several of standard
problems. The transformation can be done by the following two approaches:

Approach 1. Partition closed sets of variables into open sets. For instance, par-
tition ai < xi ≤ bi into ai < xi < bi andxi = bi.

Approach 2. Add slack variables to transform inequality constraints into equal-
ity constraints. For instance, transformgj (x) ≥ 0 into gj (x) − j2

s = 0 and
−∞ < js <∞.
By repeatedly using approach 1 and approach 2, the original problem is finally
transformed into one or several standard problemsSP ,

minf (x)
st. hj (x) = 0, j ∈ J ⊂ {1,2, · · · ,m},

ai < xi < bi, i ∈ K ⊂ {1,2, · · · , n},
−∞ < js <∞, js are slack variables.

(2) Transform each standard problem into two systems of equations.
According to the results about the first-order necessary condition, all local min-

imizersx∗ of a standard problem must be found in the solutions of the systemP1

of equations (corresponding to this standard problem),

(P1) :
{ ∇f (x∗) =∑j∈J λj∇hj(x∗),
hj (x

∗) = 0, j ∈ J ⊂ {1,2, . . . , m},
or P2,

(P2) :
{
det| ∂h1

∂x
, ∂h2
∂x
, . . . ,

∂hp

∂x
| = 0

hj(x
∗) = 0 j ∈ J ⊂ {1,2, · · · ,m},

wherep = |J |. Thus, the original problem is transformed into the problem of
solving several systems of equations.

(3) Partition the rational expressions of each system of equations into two groups
of polynomials.

Partition the rational expression of each system of equations into two polyno-
mial groupsA andB. For instance, assume thatpi = kia (x)

kib(x)
= 0, i = 1,2, · · · ,

then allkia(x)′s form the groupA andkib(x)′s form the groupB.
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(4) Find a characteristic setCS of each groupA of polynomials.
The procedure of finding the characteristic sets of polynomials can be demon-

strated by the following figure:

PS = PS0

BS0(⊂ PS0)

RS0

]
+ = PS1

BS1

RS1

]
+ = PS2

. . .

P Sm
BSm (= CS)
RSm = 8

In this figure,PS0 = PS, BSk is a basic set ofPSk (it is easy to find a basic set
according to the definition of basic set), the remainderRSk = { the remainder ofp
toBSk, p ∈ PSk − BSk}, andPSk+1 = BSk ∪ RSk, wherek = 0, . . . , m− 1.

(5) Find the set of zero points of each characteristic setCS by iterative elimin-
ation method.

Since a characteristic set is in triangular form, the zero points ofCS can be
found by means of iteratively solving a series of algebraic equations with one
variable. For an equation with one variable, first using Sturm sequence method,
one can determine whether there are real roots of the equation; secondly, the upper
and lower bound of real roots can be determined from the theory on polynomials;
at last, all real roots of the equation can be found by iterative algorithms, such as
bi-part method, accelerated Newton method, and so on.

(6) Exclude some zero points of eachCS, which lead to that anyhj(x) = 0
does not hold or let any polynomial of the groupB corresponding to the groupA
be equal to zero. The remainder contains all local minimum points of the problem.

(7) Based on the step (6), find the optimizers by comparing the values of object-
ive function for the zero point sets of all characteristic sets.

4. The global convergence of algorithm

An algorithm is calledglobally convergentif the algorithm can approximate all the
global optimizers within any given precisionε in finite steps.
THEOREM. If the problem(P ) has the finite number of global optimizers in its
feasible region, then the algorithm is globally convergent.

We give a brief proof as follows.
Proof. 1. By step (1), the original problem can be transformed into the finite number
of standard problems in finite steps. By steps (2) and (3), the finite number of
polynomial groups can be obtained. Moreover, the finite number of characteristic
sets whose order is finite can be obtained in finite steps from Lemma 2.
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2. Since the given problem has the finite number of optimizers, each optimizer
x∗ must be a unique local minimizer in a sufficiently small regionN(x∗). That is to
say,x∗ belongs to the set of isolated zero points of systems of equationsP1 andP2

(if the gradient vectors∇hj(x∗)(j = 1,2, . . . , p) are linearly independent, then
the local minimizers are in the set of isolated zero points ofP1; or else they are in
the set of isolated zero points ofP2 ). Fromzero(CS/I) ⊂ zero(PS) ⊂ zero(CS)
(Lemma 2), we know that all local minimizers are included in the set of isolated
zero points of characteristic sets ofP1 or P2; i.e., the optimizers belong to the set
of isolated zero points of characteristic sets.

3. By the Bezout theorem and the results of algebraic geometry (Shafarevich,
1977), we have known that the set of isolated zero points of a system of poly-
nomial equations is finite, it also means that the set of isolated zero points of a
characteristic set is finite. This set of zero points can be obtained by iteratively
solving finite number of equations with one variable (the characteristic set is with
triangular form): for a polynomial with one variable, we can determine the upper
and lower bounds of all real roots by the theory of polynomials, and assuming
they area andb respectively; then, using the bi-part method, we can get a solution
with the required precision in less thatlog2

a−b
ε

steps; in fact, we can use another
methods, e.g. Newton method, to find solutions of equations in fewer steps. This
means that the algorithm will converge to all zero points of characteristic sets in
finite steps.

4. Comparing the values of objective function atn finite solutions can be done
in O(n · logn) steps.

In a word, by steps (2–7) one can find global optimizers in finite steps.

5. The implementation of the algorithm and results

The program of this algorithm involves many mathematical methods and software
techniques. We have applied the program to calculate 35 examples in 486/33 mi-
crocomputers (4M) and obtained satisfactory results in respect of high precision,
reliability, and convenience. Most examples are abstracted from the test examples
of twelve books ([1–12]). Each computation result of the thirty-five examples is
exactly identical to the original one except for one example, on which there is
a little difference at the eighth number after the fraction point from the original
result (see Example 3):

the original : x1 = ±0.066041593 x2 = ∓0.192895426
the new : x1 = ±0.066041588 x2 = ∓0.192895426
the diff erence : 1x1 = ±0.00000001 1x2 = ∓0.000000000;

moreover, the original result is also an approximate result obtained by the inter-
val method. Among these examples, there are different classes of problems, such
as, the problems of multi-optimizers, problems of multi-local minimizers, prob-
lems of convex or nonconvex programming, problems of geometric programming,
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problems of general programming with rational functions, and special problems in
which the optimizers do not satisfyK − T condition.

We here show five examples of them:
EXAMPLE 1 (Franklin, 1980). Rational functions, two groups of global optim-
izers.

objective =10+ 6 · x1+ 6 · x2
1 − 22 · x2− 20 · x1 · x2+ 21 · x2

2

+ 1

25 · (1− x2
1/4− x2

2)

St. x1 ≥ 0.

EXAMPLE 2 (Phillips, 1987). Rational functions, four groups of global optim-
izers.

objective = 5 · x2
1 − x2

2 · x4
3

St. − 2− 5 · x2
1

x2
2

+ 3 · x3

x2
≥ 0

EXAMPLE 3 (Hansen, 1992). Two groups of global optimizers.

objective = 12 · x2
1 − (63 · x4

1)/10+ x6
1 + 6 · x1 · x2 + 6 · x2

2

1− 16 · x2
1 − 25 · x2

2 ≤ 0,

− 400− 145· x1+ 13 · x3
1 + 85 · x2 ≤ 0,

− 4+ x1 · x2 ≤ 0

EXAMPLE 4 (Van Der Hoek, 1980). A group of global optimizers with multi-local
minimizers.

objective =
14463+ 18340· x1 + 10197· x2

1 − 34198· x2− 24908· x1 · x2+
20909· x2

2 + 4542· x3 − 2026· x1 · x3− 3466· x2 · x3+ 1755· x2
3+

8672· x4 + 3896· x1 · x4 − 9828· x2 · x4+ 2178· x3 · x4+ 1515· x2
4+

86 · x5 + 658· x1 · x5− 372· x2 · x5− 348· x3 · x5 − 44 · x4 · x5 + 27 · x2
5

st. −5+ x1+ x2 + x3+ x4+ x5 ≤ 5,
−20+ 10 · x1+ 10 · x2− 3 · x3 + 5 · x4+ 4 · x5 ≥ 0,
−40+ 8 · x1 − x2+ 2 · x3 + 5 · x4− 3 · x5 ≥ 0
−11+ 8 · x1 − x2+ 2 · x3 + 5 · x4− 3 · x5 ≥ 0,
−30+ 4 · x1 + 2 · x2− 3 · x3+ 5 · x4− x5 ≤ 0
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EXAMPLE 5 (Schittkowski, 1987). A group of global optimizers with multi-local
minimizers.

objective =
600+ 720· x1+ 1260· x2

1 − 1072· x3
1 − 2454· x4

1 + 1344· x5
1+

952· x6
1 − 768· x7

1 + 144· x8
1 + 720· x2− 4680· x1 · x2+ 7344· x2

1 · x2+
5784· x3

1 · x2− 7680· x4
1 · x2− 168· x5

1 · x2+ 1344· x6
1 · x2− 288· x7

1 · x2+
3060· x2

2 − 19296· x1 · x2
2 + 7776· x2

1 · x2
2 + 9840· x3

1 · x2
2−

5370· x4
1 · x2

2 + 2592· x5
1 · x2

2 − 648· x6
1 · x2

2 + 12288· x3
2−

23616· x1 · x3
2 + 5040· x2

1 · x3
2 + 1240· x3

1 · x3
2 − 4080· x4

1 · x3
2+

1224· x5
1 · x3

2 + 14346· x4
2 − 11880· x1 · x4

2 + 8730· x2
1 · x4

2−
3480· x3

1 · x4
2 + 1305· x4

1 · x4
2 + 1944· x5

2 − 1188· x1 · x5
2+

3672· x2
1 · x5

2 − 1836· x3
1 · x5

2 − 4428· x6
2 + 1944· x1 · x6

2−
1458· x2

1 · x6
2 − 648· x7

2 + 972· x1 · x7
2 + 729· x8

2

St. − 2≤ x1 ≤ 2,−2≤ x2 ≤ 2

6. The features of the program

The program made by us is with the following features:
(1) Global property: for the nonlinear programming problems that both the ob-

jective functions and the constraints are rational, global solutions are obtained by
a unified and simple way.

(2) Computation precision is high.
(3) Reliability check is easy to be done for each problem by several ways.
(4) A starting iterative point is not required.
(5) Data format is with common form.
(6) Symbol calculation, numerical computation, other mathematical skills, and

software techniques are applied in the program.

7. The limitation

The size of polynomials may grow up exponentially while the method of charac-
teristic set is used, so the complexity is exponential in some cases.
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